11 research outputs found

    Propagation of an Earth-directed coronal mass ejection in three dimensions

    Full text link
    Solar coronal mass ejections (CMEs) are the most significant drivers of adverse space weather at Earth, but the physics governing their propagation through the heliosphere is not well understood. While stereoscopic imaging of CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided some insight into their three-dimensional (3D) propagation, the mechanisms governing their evolution remain unclear due to difficulties in reconstructing their true 3D structure. Here we use a new elliptical tie-pointing technique to reconstruct a full CME front in 3D, enabling us to quantify its deflected trajectory from high latitudes along the ecliptic, and measure its increasing angular width and propagation from 2-46 solar radii (approximately 0.2 AU). Beyond 7 solar radii, we show that its motion is determined by an aerodynamic drag in the solar wind and, using our reconstruction as input for a 3D magnetohydrodynamic simulation, we determine an accurate arrival time at the Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF

    A Community Dataset for Comparing Automated Coronal Hole Detection Schemes

    No full text
    This is the author accepted manuscript.Automated detection schemes are nowadays the standard approach for locating coronal holes in EUV images from the Solar Dynamics Observatory (SDO). But factors such as the noisy nature of solar imagery, instrumental effects, and others make it challenging to identify coronal holes using these automated schemes. While discrepancies between detection schemes have been noted in the literature, a comprehensive assessment of these discrepancies is still lacking. The contribution of the Coronal Hole Boundary Working Team in the COSPAR ISWAT initiative is threefold to close this gap. First, we present the first community dataset for comparing automated coronal hole detection schemes. This dataset consists of 29 SDO images, all of which were selected by experienced observers to challenge automated schemes. Second, we use this community dataset as input to 14 widely-applied automated schemes to study coronal holes and collect their detection results. Third, we study three SDO images from the dataset that exemplify the most important lessons learned from this effort. Our findings show that the choice of the automated detection scheme can have a significant effect on the physical properties of coronal holes, and we discuss the implications of these findings for open questions in solar and heliospheric physics. We envision that this community dataset will serve the scientific community as a benchmark dataset for future developments in the field.Austrian Science Fund (FWF)European Research Council (ERC)NAS

    Solar Magnetism in the Polar Regions

    No full text

    Models and data analysis tools for the Solar Orbiter mission

    Get PDF
    Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk. Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies. Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter. Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission. Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission

    Solar wind stream interaction regions throughout the heliosphere

    No full text
    corecore